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PREFACE

This Memorandum is part of RAND's continuing study of Satellite
Meteorology for the National Aeronautics and Space Administration
under contract NASr-21(07). The relations which are derived will
lead to the increasingly effective use of computers in the numerical
study of radiative transfer in planetary atmospheres. The Memorandum
will be especially useful to atmospheric physicists, astrophysicists,

and applied mathematicians.



SUMMARY

A commonly occurring situation in planetary and stellar physics
is that parallel rays of radiation illuminate a slab in which both
absorption and isotropic scattering take place. The ultimate fate
of an incident photon is either to be diffusely reflected, trans-
mitted, or absorbed by the slab. While much has been accomplished
in the study of the probability of transmission and reflection, less
attention has been paid to the probability of absorption as a function
of the thickness of the slab and the angle of incidence.

The authors derive a differential-integral equation for the
dissipation function. 1In addition they derive a conservation rela-
tionship connecting the reflection, transmission, and dissipation
functions. These relations are useful for both analytic and compu-

tational purposes.
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I. INTRODUCTION

The physical situation to be considered in this Memorandum is
as follows: parallel rays of radiation are incident on a finite
homogeneous slab which absorbs and scatters radiation isotropically.
These diffusely transmitted and reflected fields have been studied

(1-3)

intensively. 1In earlier papers we have shown the importance of
the dissipation function in various analytical studies of tramsport
in a rod. In this Memorandum we derive an equation for the dissi-

pation function of a slab and write the conservation relation which

relates the reflection, transmission, and dissipation functions.

II. DERIVATION OF INVARTANT IMBEDDING EQUATION FOR THE ABSORPTION
FUNCTION

Consider a plane-parallel, homogeneous and isotropically scattering

medium of finite optical thickness T Suppose that a parallel beam of

1°
radiation of constant net flux T per unit area nommal to the incident
direction is incident on the upper surface T = 0 at a fixed angle whose
cosine is uo(O < b, S 1) with respect to the inward normal. We follow
the standard nomenclature of Chandrasekhar.(é)
The intensity of radiation which is diffusely reflected from the
slab with direction cosine u is S(Tl;u,uo)/Au, and the diffusely trans-
mitted intensity with direction cosine p is T(Tl;u,po)/4u. The di-

rectly transmitted intensity is T exp(-Tl/uo) in the direction of

incidence,



We define the absorption function L in the following fashion. Let

ﬂL(Tl,uo) = the rate of production of truly absorbed
particles in a cylinder of unit base area

extending from 1 = 0 to 7 =7 the input

1’
having direction cosine uo and the net

incident flux being T,

(It is clear that L is also the probability of ultimate absorption of
a particle with direction cosine uo which is incident on a slab of
thickness Tl.) We add an infinitesimal layer of optical thickness A
to the lower surface Tl’ and we consider its effect on the rate of

production of absorbed particles. We obtain the equation

TTL(‘T'1+A,LLO)
1 ’
TCTq 50 5k )
_ - Ty /uo A J 1 o , ;
= £ —_—
ﬂL(Tl,uo) + nuo e m + . w' — 2ndy
0
(1
1}“4 )
(1-3) + 7 J——;— 2Tpo, + o(a),

where )\ is the albedo for single scattering. The first term on the
right-hand side of the equation accounts for the absorption of particles
which never enter the thin slab. The second term accounts for those
particles which interact in the thin slab and then are absorbed. The
first bracketed expression represents the rate of production of inter-
acting particles in the cylinder of unit base area extending from

to T =1, + A, and the second bracketed expression is the

Tt 1

probability that an interacting particle is ultimately absorbed. All




other processes have probabilities of order AZ or greater and are ac-
counted for in the term o(A). Letting A — 0, we obtain the partial

differential integral equation

OL(Ty5H)
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! (2)
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0 0 ©
The initial condition is
L(O,uo) = 0. (3

III. CHECK FOR THE CASE OF NO REEMISSION

For the case of no reemission of interacting particles, the rate

of production of absorbed particles is

-T/uO
nL('rl,p,o) = f T e dr
0

(4)
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As a check, we put A = 0 in Eq. (2), and the result agrees with

Eq. (4).



IV. CONSERVATION RELATIONSHIP

The particles incident on a unit of horizontal area are either
directly transmitted, truly absorbed, diffusely reflected, or diffusely

transmitted. This leads to the conservation relationship

1
-Tl/uo S(Tl’u',’“'o) ; ’
T'Tp,o = Tru.o e + TTL(Tl,uO) + JT g 211 dp

0

(5)
1
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(6)
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V., DISCUSSION

For reference, we present the complete set of integro-
differential equations for the diffuse reflection, diffuse transmission

and absorption functions. These equations are
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This set of equations can be approximated via the use of Gaussian
quadrature formulas which leads to an effective computational scheme
for detemining S, T, and L.

The conservation equation, which can be derived analytically as

well as physically, connects the solutions of Eqs. (7), (8), and (9).




It can serve as an automatic check on the accuracy of the numerical calcula-
tions of §, T, and L. For the inhomogeneous or anisotropic cases, the

appropriate equations for the absorption functions are readily derived.
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